Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(16): 6360-6372, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37036108

RESUMO

Residential buildings provide unique conditions for opportunistic premise plumbing pathogen (OPPP) exposure via aerosolized water droplets produced by showerheads, faucets, and tubs. The objective of this review was to critically evaluate the existing literature that assessed the impact of potentially enhancing conditions to OPPP occurrence associated with residential plumbing and to point out knowledge gaps. Comprehensive studies on the topic were found to be lacking. Major knowledge gaps identified include the assessment of OPPP growth in the residential plumbing, from building entry to fixtures, and evaluation of the extent of the impact of typical residential plumbing design (e.g., trunk and branch and manifold), components (e.g., valves and fixtures), water heater types and temperature setting of operation, and common pipe materials (copper, PEX, and PVC/CPVC). In addition, impacts of the current plumbing code requirements on OPPP responses have not been assessed by any study and a lack of guidelines for OPPP risk management in residences was identified. Finally, the research required to expand knowledge on OPPP amplification in residences was discussed.


Assuntos
Água Potável , Engenharia Sanitária , Abastecimento de Água , Habitação , Microbiologia da Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-31080881

RESUMO

The NIST Net-Zero Energy Residential Test Facility (NZERTF) is a highly instrumented, highly configurable, single-family, net-zero energy house occupied by a virtual family of four. A detailed transient model of the NZERTF and the accompanying mechanical equipment was created using information available before construction; the model incorporated building geometric details and construction material properties, as well as manufacturers' specifications for HVAC, water heating, solar PV and other equipment. This model represents the typical design paradigm, where actual building performance and detailed equipment operation are not known. This original model underpredicted the measured annual energy consumption by 13.8 %. The measured data were used to understand and correct the sources of error at the component level; modifications to the HVAC system, interior thermal capacitance, and domestic hot water system improved the energy consumption prediction to within 1.6 % of measured data. The differences between the original and modified models are useful for understanding the sources, magnitudes, and possible corrections to errors in energy models for high-efficiency residences. The modified model will be used in future studies of alternative energy system configurations and control strategies, contributing to cost-effective and optimum design of net-zero energy houses in America.

3.
J Sol Energy Eng ; 139(6)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29581649

RESUMO

The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

5.
Energy Build ; 133: 371-380, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27990058

RESUMO

An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.

6.
Med Eng Phys ; 33(7): 887-92, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21055994

RESUMO

A novel, miniaturized, high-efficiency photocatalytic cell, able to work in dynamic conditions, has been designed and validated in this study. Microfluidic channels were molded out of polydimethylsiloxane (PDMS) by means of standard soft lithography techniques, so as to work as photocatalytic cells, where the coupling of anatase titanium dioxide thin films and platinum electrodes, allows an electrically assisted photocatalytic reaction to produce dissolved oxygen gas from the water content of flowing fluid (e.g. blood). The thin films were deposited onto quartz glass substrates at room temperature (300 K) using reactive radio-frequency sputtering with a titanium metal target. The photocatalytic activity was evaluated through reduction rate of methylene blue solution. The results of the current study, as a proof of concept, have shown that the device can generate oxygen at a rate of 4.06 µM O(2)/(cm(2)min), thus extending its possible application range to the full oxygenation of flowing venous blood.


Assuntos
Sangue/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Oxigênio/metabolismo , Processos Fotoquímicos , Animais , Catálise , Bovinos , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Eletrodos , Azul de Metileno/química , Platina/química , Fatores de Tempo , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...